Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relnonrel | |- ( Rel A <-> ( A \ `' `' A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | |- ( Rel A <-> `' `' A = A ) |
|
| 2 | eqss | |- ( `' `' A = A <-> ( `' `' A C_ A /\ A C_ `' `' A ) ) |
|
| 3 | 1 2 | bitri | |- ( Rel A <-> ( `' `' A C_ A /\ A C_ `' `' A ) ) |
| 4 | cnvcnvss | |- `' `' A C_ A |
|
| 5 | 4 | biantrur | |- ( A C_ `' `' A <-> ( `' `' A C_ A /\ A C_ `' `' A ) ) |
| 6 | ssdif0 | |- ( A C_ `' `' A <-> ( A \ `' `' A ) = (/) ) |
|
| 7 | 3 5 6 | 3bitr2i | |- ( Rel A <-> ( A \ `' `' A ) = (/) ) |