Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relnonrel | |- ( Rel A <-> ( A \ `' `' A ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 | |- ( Rel A <-> `' `' A = A ) |
|
2 | eqss | |- ( `' `' A = A <-> ( `' `' A C_ A /\ A C_ `' `' A ) ) |
|
3 | 1 2 | bitri | |- ( Rel A <-> ( `' `' A C_ A /\ A C_ `' `' A ) ) |
4 | cnvcnvss | |- `' `' A C_ A |
|
5 | 4 | biantrur | |- ( A C_ `' `' A <-> ( `' `' A C_ A /\ A C_ `' `' A ) ) |
6 | ssdif0 | |- ( A C_ `' `' A <-> ( A \ `' `' A ) = (/) ) |
|
7 | 3 5 6 | 3bitr2i | |- ( Rel A <-> ( A \ `' `' A ) = (/) ) |