Metamath Proof Explorer


Theorem co02

Description: Composition with the empty set. Theorem 20 of Suppes p. 63. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion co02
|- ( A o. (/) ) = (/)

Proof

Step Hyp Ref Expression
1 relco
 |-  Rel ( A o. (/) )
2 rel0
 |-  Rel (/)
3 br0
 |-  -. x (/) z
4 3 intnanr
 |-  -. ( x (/) z /\ z A y )
5 4 nex
 |-  -. E. z ( x (/) z /\ z A y )
6 vex
 |-  x e. _V
7 vex
 |-  y e. _V
8 6 7 opelco
 |-  ( <. x , y >. e. ( A o. (/) ) <-> E. z ( x (/) z /\ z A y ) )
9 5 8 mtbir
 |-  -. <. x , y >. e. ( A o. (/) )
10 noel
 |-  -. <. x , y >. e. (/)
11 9 10 2false
 |-  ( <. x , y >. e. ( A o. (/) ) <-> <. x , y >. e. (/) )
12 1 2 11 eqrelriiv
 |-  ( A o. (/) ) = (/)