Metamath Proof Explorer


Theorem co02

Description: Composition with the empty set. Theorem 20 of Suppes p. 63. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion co02 A=

Proof

Step Hyp Ref Expression
1 relco RelA
2 rel0 Rel
3 br0 ¬xz
4 3 intnanr ¬xzzAy
5 4 nex ¬zxzzAy
6 vex xV
7 vex yV
8 6 7 opelco xyAzxzzAy
9 5 8 mtbir ¬xyA
10 noel ¬xy
11 9 10 2false xyAxy
12 1 2 11 eqrelriiv A=