Metamath Proof Explorer


Theorem comfffn

Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffn.o O=comp𝑓C
comfffn.b B=BaseC
Assertion comfffn OFnB×B×B

Proof

Step Hyp Ref Expression
1 comfffn.o O=comp𝑓C
2 comfffn.b B=BaseC
3 eqid HomC=HomC
4 eqid compC=compC
5 1 2 3 4 comfffval O=xB×B,yBg2ndxHomCy,fHomCxgxcompCyf
6 ovex 2ndxHomCyV
7 fvex HomCxV
8 6 7 mpoex g2ndxHomCy,fHomCxgxcompCyfV
9 5 8 fnmpoi OFnB×B×B