Metamath Proof Explorer


Theorem con2bi

Description: Contraposition. Theorem *4.12 of WhiteheadRussell p. 117. (Contributed by NM, 15-Apr-1995) (Proof shortened by Wolf Lammen, 3-Jan-2013)

Ref Expression
Assertion con2bi φ¬ψψ¬φ

Proof

Step Hyp Ref Expression
1 notbi φ¬ψ¬φ¬¬ψ
2 notnotb ψ¬¬ψ
3 2 bibi2i ¬φψ¬φ¬¬ψ
4 bicom ¬φψψ¬φ
5 1 3 4 3bitr2i φ¬ψψ¬φ