Metamath Proof Explorer


Theorem confun3

Description: Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun3.1 φχψ
confun3.2 θ¬χχ¬χ
confun3.3 χψ
confun3.4 χ¬χχ¬χ
confun3.5 χψχψψ
Assertion confun3 χ¬χχ¬χχψ

Proof

Step Hyp Ref Expression
1 confun3.1 φχψ
2 confun3.2 θ¬χχ¬χ
3 confun3.3 χψ
4 confun3.4 χ¬χχ¬χ
5 confun3.5 χψχψψ
6 3 3 4 5 confun χ¬χχ¬χχψ