Metamath Proof Explorer
Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ).
(Contributed by Jarvin Udandy, 6-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
confun.1 |
|
|
|
confun.2 |
|
|
|
confun.3 |
|
|
|
confun.4 |
|
|
Assertion |
confun |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
confun.1 |
|
| 2 |
|
confun.2 |
|
| 3 |
|
confun.3 |
|
| 4 |
|
confun.4 |
|
| 5 |
|
ax-1 |
|
| 6 |
3
|
a1i |
|
| 7 |
5 6
|
impbid |
|
| 8 |
1 4
|
ax-mp |
|
| 9 |
|
ax-1 |
|
| 10 |
1 9
|
ax-mp |
|
| 11 |
8 10
|
impbii |
|
| 12 |
2 11
|
sylibr |
|
| 13 |
12
|
a1i |
|
| 14 |
|
ax-1 |
|
| 15 |
13 14
|
impbid |
|
| 16 |
7 15
|
bitrd |
|