| Step | Hyp | Ref | Expression | 
						
							| 1 |  | confun.1 |  |-  ph | 
						
							| 2 |  | confun.2 |  |-  ( ch -> ps ) | 
						
							| 3 |  | confun.3 |  |-  ( ch -> th ) | 
						
							| 4 |  | confun.4 |  |-  ( ph -> ( ph -> ps ) ) | 
						
							| 5 |  | ax-1 |  |-  ( ch -> ( th -> ch ) ) | 
						
							| 6 | 3 | a1i |  |-  ( ch -> ( ch -> th ) ) | 
						
							| 7 | 5 6 | impbid |  |-  ( ch -> ( th <-> ch ) ) | 
						
							| 8 | 1 4 | ax-mp |  |-  ( ph -> ps ) | 
						
							| 9 |  | ax-1 |  |-  ( ph -> ( ps -> ph ) ) | 
						
							| 10 | 1 9 | ax-mp |  |-  ( ps -> ph ) | 
						
							| 11 | 8 10 | impbii |  |-  ( ph <-> ps ) | 
						
							| 12 | 2 11 | sylibr |  |-  ( ch -> ph ) | 
						
							| 13 | 12 | a1i |  |-  ( ch -> ( ch -> ph ) ) | 
						
							| 14 |  | ax-1 |  |-  ( ch -> ( ph -> ch ) ) | 
						
							| 15 | 13 14 | impbid |  |-  ( ch -> ( ch <-> ph ) ) | 
						
							| 16 | 7 15 | bitrd |  |-  ( ch -> ( th <-> ph ) ) |