| Step |
Hyp |
Ref |
Expression |
| 1 |
|
confun.1 |
|- ph |
| 2 |
|
confun.2 |
|- ( ch -> ps ) |
| 3 |
|
confun.3 |
|- ( ch -> th ) |
| 4 |
|
confun.4 |
|- ( ph -> ( ph -> ps ) ) |
| 5 |
|
ax-1 |
|- ( ch -> ( th -> ch ) ) |
| 6 |
3
|
a1i |
|- ( ch -> ( ch -> th ) ) |
| 7 |
5 6
|
impbid |
|- ( ch -> ( th <-> ch ) ) |
| 8 |
1 4
|
ax-mp |
|- ( ph -> ps ) |
| 9 |
|
ax-1 |
|- ( ph -> ( ps -> ph ) ) |
| 10 |
1 9
|
ax-mp |
|- ( ps -> ph ) |
| 11 |
8 10
|
impbii |
|- ( ph <-> ps ) |
| 12 |
2 11
|
sylibr |
|- ( ch -> ph ) |
| 13 |
12
|
a1i |
|- ( ch -> ( ch -> ph ) ) |
| 14 |
|
ax-1 |
|- ( ch -> ( ph -> ch ) ) |
| 15 |
13 14
|
impbid |
|- ( ch -> ( ch <-> ph ) ) |
| 16 |
7 15
|
bitrd |
|- ( ch -> ( th <-> ph ) ) |