Description: Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | confun2.1 | |- ( ps -> ph ) | |
| confun2.2 | |- ( ps -> -. ( ps -> ( ps /\ -. ps ) ) ) | ||
| confun2.3 | |- ( ( ps -> ph ) -> ( ( ps -> ph ) -> ph ) ) | ||
| Assertion | confun2 | |- ( ps -> ( -. ( ps -> ( ps /\ -. ps ) ) <-> ( ps -> ph ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | confun2.1 | |- ( ps -> ph ) | |
| 2 | confun2.2 | |- ( ps -> -. ( ps -> ( ps /\ -. ps ) ) ) | |
| 3 | confun2.3 | |- ( ( ps -> ph ) -> ( ( ps -> ph ) -> ph ) ) | |
| 4 | 1 1 2 3 | confun | |- ( ps -> ( -. ( ps -> ( ps /\ -. ps ) ) <-> ( ps -> ph ) ) ) |