Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
confun2
Next ⟩
confun3
Metamath Proof Explorer
Ascii
Unicode
Theorem
confun2
Description:
Confun simplified to two propositions.
(Contributed by
Jarvin Udandy
, 6-Sep-2020)
Ref
Expression
Hypotheses
confun2.1
⊢
ψ
→
φ
confun2.2
⊢
ψ
→
¬
ψ
→
ψ
∧
¬
ψ
confun2.3
⊢
ψ
→
φ
→
ψ
→
φ
→
φ
Assertion
confun2
⊢
ψ
→
¬
ψ
→
ψ
∧
¬
ψ
↔
ψ
→
φ
Proof
Step
Hyp
Ref
Expression
1
confun2.1
⊢
ψ
→
φ
2
confun2.2
⊢
ψ
→
¬
ψ
→
ψ
∧
¬
ψ
3
confun2.3
⊢
ψ
→
φ
→
ψ
→
φ
→
φ
4
1
1
2
3
confun
⊢
ψ
→
¬
ψ
→
ψ
∧
¬
ψ
↔
ψ
→
φ