Metamath Proof Explorer
		
		
		
		Description:  Given the hypotheses there exists a proof for (c implies ( d iff a ) ).
       (Contributed by Jarvin Udandy, 6-Sep-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | confun.1 | ⊢ 𝜑 | 
					
						|  |  | confun.2 | ⊢ ( 𝜒  →  𝜓 ) | 
					
						|  |  | confun.3 | ⊢ ( 𝜒  →  𝜃 ) | 
					
						|  |  | confun.4 | ⊢ ( 𝜑  →  ( 𝜑  →  𝜓 ) ) | 
				
					|  | Assertion | confun | ⊢  ( 𝜒  →  ( 𝜃  ↔  𝜑 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | confun.1 | ⊢ 𝜑 | 
						
							| 2 |  | confun.2 | ⊢ ( 𝜒  →  𝜓 ) | 
						
							| 3 |  | confun.3 | ⊢ ( 𝜒  →  𝜃 ) | 
						
							| 4 |  | confun.4 | ⊢ ( 𝜑  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 5 |  | ax-1 | ⊢ ( 𝜒  →  ( 𝜃  →  𝜒 ) ) | 
						
							| 6 | 3 | a1i | ⊢ ( 𝜒  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 | 5 6 | impbid | ⊢ ( 𝜒  →  ( 𝜃  ↔  𝜒 ) ) | 
						
							| 8 | 1 4 | ax-mp | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 9 |  | ax-1 | ⊢ ( 𝜑  →  ( 𝜓  →  𝜑 ) ) | 
						
							| 10 | 1 9 | ax-mp | ⊢ ( 𝜓  →  𝜑 ) | 
						
							| 11 | 8 10 | impbii | ⊢ ( 𝜑  ↔  𝜓 ) | 
						
							| 12 | 2 11 | sylibr | ⊢ ( 𝜒  →  𝜑 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜒  →  ( 𝜒  →  𝜑 ) ) | 
						
							| 14 |  | ax-1 | ⊢ ( 𝜒  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 15 | 13 14 | impbid | ⊢ ( 𝜒  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 16 | 7 15 | bitrd | ⊢ ( 𝜒  →  ( 𝜃  ↔  𝜑 ) ) |