Metamath Proof Explorer


Theorem consym1

Description: A symmetry with /\ .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion consym1 ψψψφ

Proof

Step Hyp Ref Expression
1 falim ψψψφ
2 1 ad2antll ψψψψψφ
3 2 pm2.43i ψψψφ