Metamath Proof Explorer


Theorem consym1

Description: A symmetry with /\ .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion consym1 ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 falim ( ⊥ → ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓𝜑 ) ) )
2 1 ad2antll ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓𝜑 ) ) )
3 2 pm2.43i ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓𝜑 ) )