Description: A symmetry with /\ .
See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | consym1 | ⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | falim | ⊢ ( ⊥ → ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) ) | |
2 | 1 | ad2antll | ⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) ) |
3 | 2 | pm2.43i | ⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) |