Description: A symmetry with /\ .
See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | consym1 | ⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falim | ⊢ ( ⊥ → ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) ) | |
| 2 | 1 | ad2antll | ⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) ) |
| 3 | 2 | pm2.43i | ⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ ⊥ ) ) → ( 𝜓 ∧ 𝜑 ) ) |