Metamath Proof Explorer


Theorem crimd

Description: The imaginary part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses crred.1 φA
crred.2 φB
Assertion crimd φA+iB=B

Proof

Step Hyp Ref Expression
1 crred.1 φA
2 crred.2 φB
3 crim ABA+iB=B
4 1 2 3 syl2anc φA+iB=B