Metamath Proof Explorer


Theorem csbid

Description: Analogue of sbid for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbid x/xA=A

Proof

Step Hyp Ref Expression
1 df-csb x/xA=y|[˙x/x]˙yA
2 sbcid [˙x/x]˙yAyA
3 2 abbii y|[˙x/x]˙yA=y|yA
4 abid2 y|yA=A
5 1 3 4 3eqtri x/xA=A