Metamath Proof Explorer


Theorem csbid

Description: Analogue of sbid for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbid
|- [_ x / x ]_ A = A

Proof

Step Hyp Ref Expression
1 df-csb
 |-  [_ x / x ]_ A = { y | [. x / x ]. y e. A }
2 sbcid
 |-  ( [. x / x ]. y e. A <-> y e. A )
3 2 abbii
 |-  { y | [. x / x ]. y e. A } = { y | y e. A }
4 abid2
 |-  { y | y e. A } = A
5 1 3 4 3eqtri
 |-  [_ x / x ]_ A = A