Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Proper substitution of classes for sets into classes csbie  
				
		 
		
			
		 
		Description:   Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by AV , 2-Dec-2019)   Reduce axiom usage.  (Revised by GG , 15-Oct-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						csbie.1   ⊢   A  ∈  V       
					 
					
						csbie.2    ⊢   x  =  A    →   B  =  C         
					 
				
					Assertion 
					csbie   ⊢   ⦋  A  /  x ⦌  B =  C       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							csbie.1  ⊢   A  ∈  V       
						
							2 
								
							 
							csbie.2   ⊢   x  =  A    →   B  =  C         
						
							3 
								
							 
							df-csb  ⊢   ⦋  A  /  x ⦌  B =   y   |  [ ˙ A  /  x ] ˙  y  ∈  B         
						
							4 
								2 
							 
							eleq2d   ⊢   x  =  A    →    y  ∈  B    ↔   y  ∈  C          
						
							5 
								1  4 
							 
							sbcie   ⊢  [ ˙ A  /  x ] ˙  y  ∈  B   ↔   y  ∈  C         
						
							6 
								5 
							 
							abbii  ⊢    y   |  [ ˙ A  /  x ] ˙  y  ∈  B    =   y   |   y  ∈  C          
						
							7 
								
							 
							abid2  ⊢    y   |   y  ∈  C     =  C       
						
							8 
								3  6  7 
							 
							3eqtri  ⊢   ⦋  A  /  x ⦌  B =  C