Metamath Proof Explorer


Theorem csbie

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses csbie.1 AV
csbie.2 x=AB=C
Assertion csbie A/xB=C

Proof

Step Hyp Ref Expression
1 csbie.1 AV
2 csbie.2 x=AB=C
3 df-csb A/xB=y|[˙A/x]˙yB
4 2 eleq2d x=AyByC
5 1 4 sbcie [˙A/x]˙yByC
6 5 abbii y|[˙A/x]˙yB=y|yC
7 abid2 y|yC=C
8 3 6 7 3eqtri A/xB=C