Metamath Proof Explorer


Theorem csbie2

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007)

Ref Expression
Hypotheses csbie2t.1 AV
csbie2t.2 BV
csbie2.3 x=Ay=BC=D
Assertion csbie2 A/xB/yC=D

Proof

Step Hyp Ref Expression
1 csbie2t.1 AV
2 csbie2t.2 BV
3 csbie2.3 x=Ay=BC=D
4 3 gen2 xyx=Ay=BC=D
5 1 2 csbie2t xyx=Ay=BC=DA/xB/yC=D
6 4 5 ax-mp A/xB/yC=D