Metamath Proof Explorer


Theorem csbieb

Description: Bidirectional conversion between an implicit class substitution hypothesis x = A -> B = C and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008)

Ref Expression
Hypotheses csbieb.1 AV
csbieb.2 _xC
Assertion csbieb xx=AB=CA/xB=C

Proof

Step Hyp Ref Expression
1 csbieb.1 AV
2 csbieb.2 _xC
3 csbiebt AV_xCxx=AB=CA/xB=C
4 1 2 3 mp2an xx=AB=CA/xB=C