Metamath Proof Explorer


Theorem csbsng

Description: Distribute proper substitution through the singleton of a class. csbsng is derived from the virtual deduction proof csbsngVD . (Contributed by Alan Sare, 10-Nov-2012)

Ref Expression
Assertion csbsng AVA/xB=A/xB

Proof

Step Hyp Ref Expression
1 csbab A/xy|y=B=y|[˙A/x]˙y=B
2 sbceq2g AV[˙A/x]˙y=By=A/xB
3 2 abbidv AVy|[˙A/x]˙y=B=y|y=A/xB
4 1 3 eqtrid AVA/xy|y=B=y|y=A/xB
5 df-sn B=y|y=B
6 5 csbeq2i A/xB=A/xy|y=B
7 df-sn A/xB=y|y=A/xB
8 4 6 7 3eqtr4g AVA/xB=A/xB