Metamath Proof Explorer


Theorem csbvarg

Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbvarg AVA/xx=A

Proof

Step Hyp Ref Expression
1 elex AVAV
2 df-csb y/xx=z|[˙y/x]˙zx
3 sbcel2gv yV[˙y/x]˙zxzy
4 3 eqabcdv yVz|[˙y/x]˙zx=y
5 2 4 eqtrid yVy/xx=y
6 5 elv y/xx=y
7 6 csbeq2i A/yy/xx=A/yy
8 csbcow A/yy/xx=A/xx
9 df-csb A/yy=z|[˙A/y]˙zy
10 7 8 9 3eqtr3i A/xx=z|[˙A/y]˙zy
11 sbcel2gv AV[˙A/y]˙zyzA
12 11 eqabcdv AVz|[˙A/y]˙zy=A
13 10 12 eqtrid AVA/xx=A
14 1 13 syl AVA/xx=A