Metamath Proof Explorer


Theorem cvlsupr6

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a A=AtomsK
cvlsupr5.j ˙=joinK
Assertion cvlsupr6 KCvLatPAQARAPQP˙R=Q˙RRQ

Proof

Step Hyp Ref Expression
1 cvlsupr5.a A=AtomsK
2 cvlsupr5.j ˙=joinK
3 eqid K=K
4 1 3 2 cvlsupr2 KCvLatPAQARAPQP˙R=Q˙RRPRQRKP˙Q
5 simp2 RPRQRKP˙QRQ
6 4 5 syl6bi KCvLatPAQARAPQP˙R=Q˙RRQ
7 6 3exp KCvLatPAQARAPQP˙R=Q˙RRQ
8 7 imp4a KCvLatPAQARAPQP˙R=Q˙RRQ
9 8 3imp KCvLatPAQARAPQP˙R=Q˙RRQ