Metamath Proof Explorer


Theorem cvlsupr2

Description: Two equivalent ways of expressing that R is a superposition of P and Q . (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlsupr2.a A=AtomsK
cvlsupr2.l ˙=K
cvlsupr2.j ˙=joinK
Assertion cvlsupr2 KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q

Proof

Step Hyp Ref Expression
1 cvlsupr2.a A=AtomsK
2 cvlsupr2.l ˙=K
3 cvlsupr2.j ˙=joinK
4 simpl3 KCvLatPAQARAPQP˙R=Q˙RPQ
5 4 necomd KCvLatPAQARAPQP˙R=Q˙RQP
6 simplr KCvLatPAQARAPQP˙R=Q˙RR=PP˙R=Q˙R
7 oveq2 R=PP˙R=P˙P
8 oveq2 R=PQ˙R=Q˙P
9 7 8 eqeq12d R=PP˙R=Q˙RP˙P=Q˙P
10 eqcom P˙P=Q˙PQ˙P=P˙P
11 9 10 bitrdi R=PP˙R=Q˙RQ˙P=P˙P
12 11 adantl KCvLatPAQARAPQP˙R=Q˙RR=PP˙R=Q˙RQ˙P=P˙P
13 6 12 mpbid KCvLatPAQARAPQP˙R=Q˙RR=PQ˙P=P˙P
14 simpl1 KCvLatPAQARAPQP˙R=Q˙RKCvLat
15 cvllat KCvLatKLat
16 14 15 syl KCvLatPAQARAPQP˙R=Q˙RKLat
17 simpl21 KCvLatPAQARAPQP˙R=Q˙RPA
18 eqid BaseK=BaseK
19 18 1 atbase PAPBaseK
20 17 19 syl KCvLatPAQARAPQP˙R=Q˙RPBaseK
21 18 3 latjidm KLatPBaseKP˙P=P
22 16 20 21 syl2anc KCvLatPAQARAPQP˙R=Q˙RP˙P=P
23 22 adantr KCvLatPAQARAPQP˙R=Q˙RR=PP˙P=P
24 13 23 eqtrd KCvLatPAQARAPQP˙R=Q˙RR=PQ˙P=P
25 24 ex KCvLatPAQARAPQP˙R=Q˙RR=PQ˙P=P
26 simpl22 KCvLatPAQARAPQP˙R=Q˙RQA
27 18 1 atbase QAQBaseK
28 26 27 syl KCvLatPAQARAPQP˙R=Q˙RQBaseK
29 18 2 3 latleeqj1 KLatQBaseKPBaseKQ˙PQ˙P=P
30 16 28 20 29 syl3anc KCvLatPAQARAPQP˙R=Q˙RQ˙PQ˙P=P
31 cvlatl KCvLatKAtLat
32 14 31 syl KCvLatPAQARAPQP˙R=Q˙RKAtLat
33 2 1 atcmp KAtLatQAPAQ˙PQ=P
34 32 26 17 33 syl3anc KCvLatPAQARAPQP˙R=Q˙RQ˙PQ=P
35 30 34 bitr3d KCvLatPAQARAPQP˙R=Q˙RQ˙P=PQ=P
36 25 35 sylibd KCvLatPAQARAPQP˙R=Q˙RR=PQ=P
37 36 necon3d KCvLatPAQARAPQP˙R=Q˙RQPRP
38 5 37 mpd KCvLatPAQARAPQP˙R=Q˙RRP
39 simplr KCvLatPAQARAPQP˙R=Q˙RR=QP˙R=Q˙R
40 oveq2 R=QP˙R=P˙Q
41 oveq2 R=QQ˙R=Q˙Q
42 40 41 eqeq12d R=QP˙R=Q˙RP˙Q=Q˙Q
43 42 adantl KCvLatPAQARAPQP˙R=Q˙RR=QP˙R=Q˙RP˙Q=Q˙Q
44 39 43 mpbid KCvLatPAQARAPQP˙R=Q˙RR=QP˙Q=Q˙Q
45 18 3 latjidm KLatQBaseKQ˙Q=Q
46 16 28 45 syl2anc KCvLatPAQARAPQP˙R=Q˙RQ˙Q=Q
47 46 adantr KCvLatPAQARAPQP˙R=Q˙RR=QQ˙Q=Q
48 44 47 eqtrd KCvLatPAQARAPQP˙R=Q˙RR=QP˙Q=Q
49 48 ex KCvLatPAQARAPQP˙R=Q˙RR=QP˙Q=Q
50 18 2 3 latleeqj1 KLatPBaseKQBaseKP˙QP˙Q=Q
51 16 20 28 50 syl3anc KCvLatPAQARAPQP˙R=Q˙RP˙QP˙Q=Q
52 2 1 atcmp KAtLatPAQAP˙QP=Q
53 32 17 26 52 syl3anc KCvLatPAQARAPQP˙R=Q˙RP˙QP=Q
54 51 53 bitr3d KCvLatPAQARAPQP˙R=Q˙RP˙Q=QP=Q
55 49 54 sylibd KCvLatPAQARAPQP˙R=Q˙RR=QP=Q
56 55 necon3d KCvLatPAQARAPQP˙R=Q˙RPQRQ
57 4 56 mpd KCvLatPAQARAPQP˙R=Q˙RRQ
58 simpl23 KCvLatPAQARAPQP˙R=Q˙RRA
59 18 1 atbase RARBaseK
60 58 59 syl KCvLatPAQARAPQP˙R=Q˙RRBaseK
61 18 2 3 latlej1 KLatQBaseKRBaseKQ˙Q˙R
62 16 28 60 61 syl3anc KCvLatPAQARAPQP˙R=Q˙RQ˙Q˙R
63 simpr KCvLatPAQARAPQP˙R=Q˙RP˙R=Q˙R
64 62 63 breqtrrd KCvLatPAQARAPQP˙R=Q˙RQ˙P˙R
65 2 3 1 cvlatexch1 KCvLatQARAPAQPQ˙P˙RR˙P˙Q
66 14 26 58 17 5 65 syl131anc KCvLatPAQARAPQP˙R=Q˙RQ˙P˙RR˙P˙Q
67 64 66 mpd KCvLatPAQARAPQP˙R=Q˙RR˙P˙Q
68 38 57 67 3jca KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q
69 simpr3 KCvLatPAQARAPQRPRQR˙P˙QR˙P˙Q
70 simpl1 KCvLatPAQARAPQRPRQR˙P˙QKCvLat
71 70 15 syl KCvLatPAQARAPQRPRQR˙P˙QKLat
72 simpl21 KCvLatPAQARAPQRPRQR˙P˙QPA
73 72 19 syl KCvLatPAQARAPQRPRQR˙P˙QPBaseK
74 simpl22 KCvLatPAQARAPQRPRQR˙P˙QQA
75 74 27 syl KCvLatPAQARAPQRPRQR˙P˙QQBaseK
76 18 3 latjcom KLatPBaseKQBaseKP˙Q=Q˙P
77 71 73 75 76 syl3anc KCvLatPAQARAPQRPRQR˙P˙QP˙Q=Q˙P
78 77 breq2d KCvLatPAQARAPQRPRQR˙P˙QR˙P˙QR˙Q˙P
79 simpl23 KCvLatPAQARAPQRPRQR˙P˙QRA
80 simpr2 KCvLatPAQARAPQRPRQR˙P˙QRQ
81 2 3 1 cvlatexch1 KCvLatRAPAQARQR˙Q˙PP˙Q˙R
82 70 79 72 74 80 81 syl131anc KCvLatPAQARAPQRPRQR˙P˙QR˙Q˙PP˙Q˙R
83 simpr1 KCvLatPAQARAPQRPRQR˙P˙QRP
84 83 necomd KCvLatPAQARAPQRPRQR˙P˙QPR
85 2 3 1 cvlatexchb2 KCvLatPAQARAPRP˙Q˙RP˙R=Q˙R
86 70 72 74 79 84 85 syl131anc KCvLatPAQARAPQRPRQR˙P˙QP˙Q˙RP˙R=Q˙R
87 82 86 sylibd KCvLatPAQARAPQRPRQR˙P˙QR˙Q˙PP˙R=Q˙R
88 78 87 sylbid KCvLatPAQARAPQRPRQR˙P˙QR˙P˙QP˙R=Q˙R
89 69 88 mpd KCvLatPAQARAPQRPRQR˙P˙QP˙R=Q˙R
90 68 89 impbida KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q