Metamath Proof Explorer


Theorem cvlsupr3

Description: Two equivalent ways of expressing that R is a superposition of P and Q , which can replace the superposition part of ishlat1 , ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) , with the simpler E. z e. A ( x .\/ z ) = ( y .\/ z ) as shown in ishlat3N . (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlsupr2.a A = Atoms K
cvlsupr2.l ˙ = K
cvlsupr2.j ˙ = join K
Assertion cvlsupr3 K CvLat P A Q A R A P ˙ R = Q ˙ R P Q R P R Q R ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cvlsupr2.a A = Atoms K
2 cvlsupr2.l ˙ = K
3 cvlsupr2.j ˙ = join K
4 df-ne P Q ¬ P = Q
5 4 imbi1i P Q P ˙ R = Q ˙ R ¬ P = Q P ˙ R = Q ˙ R
6 oveq1 P = Q P ˙ R = Q ˙ R
7 6 biantrur ¬ P = Q P ˙ R = Q ˙ R P = Q P ˙ R = Q ˙ R ¬ P = Q P ˙ R = Q ˙ R
8 pm4.83 P = Q P ˙ R = Q ˙ R ¬ P = Q P ˙ R = Q ˙ R P ˙ R = Q ˙ R
9 5 7 8 3bitrri P ˙ R = Q ˙ R P Q P ˙ R = Q ˙ R
10 1 2 3 cvlsupr2 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q
11 10 3expia K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q
12 11 pm5.74d K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P Q R P R Q R ˙ P ˙ Q
13 9 12 syl5bb K CvLat P A Q A R A P ˙ R = Q ˙ R P Q R P R Q R ˙ P ˙ Q