Metamath Proof Explorer


Theorem cvlsupr3

Description: Two equivalent ways of expressing that R is a superposition of P and Q , which can replace the superposition part of ishlat1 , ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) , with the simpler E. z e. A ( x .\/ z ) = ( y .\/ z ) as shown in ishlat3N . (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlsupr2.a A=AtomsK
cvlsupr2.l ˙=K
cvlsupr2.j ˙=joinK
Assertion cvlsupr3 KCvLatPAQARAP˙R=Q˙RPQRPRQR˙P˙Q

Proof

Step Hyp Ref Expression
1 cvlsupr2.a A=AtomsK
2 cvlsupr2.l ˙=K
3 cvlsupr2.j ˙=joinK
4 df-ne PQ¬P=Q
5 4 imbi1i PQP˙R=Q˙R¬P=QP˙R=Q˙R
6 oveq1 P=QP˙R=Q˙R
7 6 biantrur ¬P=QP˙R=Q˙RP=QP˙R=Q˙R¬P=QP˙R=Q˙R
8 pm4.83 P=QP˙R=Q˙R¬P=QP˙R=Q˙RP˙R=Q˙R
9 5 7 8 3bitrri P˙R=Q˙RPQP˙R=Q˙R
10 1 2 3 cvlsupr2 KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q
11 10 3expia KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q
12 11 pm5.74d KCvLatPAQARAPQP˙R=Q˙RPQRPRQR˙P˙Q
13 9 12 bitrid KCvLatPAQARAP˙R=Q˙RPQRPRQR˙P˙Q