Metamath Proof Explorer


Theorem cvlatl

Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion cvlatl KCvLatKAtLat

Proof

Step Hyp Ref Expression
1 eqid BaseK=BaseK
2 eqid K=K
3 eqid joinK=joinK
4 eqid AtomsK=AtomsK
5 1 2 3 4 iscvlat KCvLatKAtLatpAtomsKqAtomsKxBaseK¬pKxpKxjoinKqqKxjoinKp
6 5 simplbi KCvLatKAtLat