Metamath Proof Explorer


Theorem iscvlat

Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses iscvlat.b B=BaseK
iscvlat.l ˙=K
iscvlat.j ˙=joinK
iscvlat.a A=AtomsK
Assertion iscvlat KCvLatKAtLatpAqAxB¬p˙xp˙x˙qq˙x˙p

Proof

Step Hyp Ref Expression
1 iscvlat.b B=BaseK
2 iscvlat.l ˙=K
3 iscvlat.j ˙=joinK
4 iscvlat.a A=AtomsK
5 fveq2 k=KAtomsk=AtomsK
6 5 4 eqtr4di k=KAtomsk=A
7 fveq2 k=KBasek=BaseK
8 7 1 eqtr4di k=KBasek=B
9 fveq2 k=Kk=K
10 9 2 eqtr4di k=Kk=˙
11 10 breqd k=Kpkxp˙x
12 11 notbid k=K¬pkx¬p˙x
13 eqidd k=Kp=p
14 fveq2 k=Kjoink=joinK
15 14 3 eqtr4di k=Kjoink=˙
16 15 oveqd k=Kxjoinkq=x˙q
17 13 10 16 breq123d k=Kpkxjoinkqp˙x˙q
18 12 17 anbi12d k=K¬pkxpkxjoinkq¬p˙xp˙x˙q
19 eqidd k=Kq=q
20 15 oveqd k=Kxjoinkp=x˙p
21 19 10 20 breq123d k=Kqkxjoinkpq˙x˙p
22 18 21 imbi12d k=K¬pkxpkxjoinkqqkxjoinkp¬p˙xp˙x˙qq˙x˙p
23 8 22 raleqbidv k=KxBasek¬pkxpkxjoinkqqkxjoinkpxB¬p˙xp˙x˙qq˙x˙p
24 6 23 raleqbidv k=KqAtomskxBasek¬pkxpkxjoinkqqkxjoinkpqAxB¬p˙xp˙x˙qq˙x˙p
25 6 24 raleqbidv k=KpAtomskqAtomskxBasek¬pkxpkxjoinkqqkxjoinkppAqAxB¬p˙xp˙x˙qq˙x˙p
26 df-cvlat CvLat=kAtLat|pAtomskqAtomskxBasek¬pkxpkxjoinkqqkxjoinkp
27 25 26 elrab2 KCvLatKAtLatpAqAxB¬p˙xp˙x˙qq˙x˙p