Metamath Proof Explorer


Definition df-atl

Description: Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)

Ref Expression
Assertion df-atl AtLat=kLat|BasekdomglbkxBasekx0.kpAtomskpkx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cal classAtLat
1 vk setvark
2 clat classLat
3 cbs classBase
4 1 cv setvark
5 4 3 cfv classBasek
6 cglb classglb
7 4 6 cfv classglbk
8 7 cdm classdomglbk
9 5 8 wcel wffBasekdomglbk
10 vx setvarx
11 10 cv setvarx
12 cp0 class0.
13 4 12 cfv class0.k
14 11 13 wne wffx0.k
15 vp setvarp
16 catm classAtoms
17 4 16 cfv classAtomsk
18 15 cv setvarp
19 cple classle
20 4 19 cfv classk
21 18 11 20 wbr wffpkx
22 21 15 17 wrex wffpAtomskpkx
23 14 22 wi wffx0.kpAtomskpkx
24 23 10 5 wral wffxBasekx0.kpAtomskpkx
25 9 24 wa wffBasekdomglbkxBasekx0.kpAtomskpkx
26 25 1 2 crab classkLat|BasekdomglbkxBasekx0.kpAtomskpkx
27 0 26 wceq wffAtLat=kLat|BasekdomglbkxBasekx0.kpAtomskpkx