Metamath Proof Explorer


Theorem isatl

Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)

Ref Expression
Hypotheses isatlat.b B=BaseK
isatlat.g G=glbK
isatlat.l ˙=K
isatlat.z 0˙=0.K
isatlat.a A=AtomsK
Assertion isatl KAtLatKLatBdomGxBx0˙yAy˙x

Proof

Step Hyp Ref Expression
1 isatlat.b B=BaseK
2 isatlat.g G=glbK
3 isatlat.l ˙=K
4 isatlat.z 0˙=0.K
5 isatlat.a A=AtomsK
6 fveq2 k=KBasek=BaseK
7 6 1 eqtr4di k=KBasek=B
8 fveq2 k=Kglbk=glbK
9 8 2 eqtr4di k=Kglbk=G
10 9 dmeqd k=Kdomglbk=domG
11 7 10 eleq12d k=KBasekdomglbkBdomG
12 fveq2 k=K0.k=0.K
13 12 4 eqtr4di k=K0.k=0˙
14 13 neeq2d k=Kx0.kx0˙
15 fveq2 k=KAtomsk=AtomsK
16 15 5 eqtr4di k=KAtomsk=A
17 fveq2 k=Kk=K
18 17 3 eqtr4di k=Kk=˙
19 18 breqd k=Kykxy˙x
20 16 19 rexeqbidv k=KyAtomskykxyAy˙x
21 14 20 imbi12d k=Kx0.kyAtomskykxx0˙yAy˙x
22 7 21 raleqbidv k=KxBasekx0.kyAtomskykxxBx0˙yAy˙x
23 11 22 anbi12d k=KBasekdomglbkxBasekx0.kyAtomskykxBdomGxBx0˙yAy˙x
24 df-atl AtLat=kLat|BasekdomglbkxBasekx0.kyAtomskykx
25 23 24 elrab2 KAtLatKLatBdomGxBx0˙yAy˙x
26 3anass KLatBdomGxBx0˙yAy˙xKLatBdomGxBx0˙yAy˙x
27 25 26 bitr4i KAtLatKLatBdomGxBx0˙yAy˙x