Metamath Proof Explorer


Definition df-glb

Description: Define the greatest lower bound (GLB) of a set of (poset) elements. The domain is restricted to exclude sets s for which the GLB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011) (Revised by NM, 6-Sep-2018)

Ref Expression
Assertion df-glb glb=pVs𝒫BasepιxBasep|ysxpyzBasepyszpyzpxs|∃!xBasepysxpyzBasepyszpyzpx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cglb classglb
1 vp setvarp
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarp
6 5 4 cfv classBasep
7 6 cpw class𝒫Basep
8 vx setvarx
9 vy setvary
10 3 cv setvars
11 8 cv setvarx
12 cple classle
13 5 12 cfv classp
14 9 cv setvary
15 11 14 13 wbr wffxpy
16 15 9 10 wral wffysxpy
17 vz setvarz
18 17 cv setvarz
19 18 14 13 wbr wffzpy
20 19 9 10 wral wffyszpy
21 18 11 13 wbr wffzpx
22 20 21 wi wffyszpyzpx
23 22 17 6 wral wffzBasepyszpyzpx
24 16 23 wa wffysxpyzBasepyszpyzpx
25 24 8 6 crio classιxBasep|ysxpyzBasepyszpyzpx
26 3 7 25 cmpt classs𝒫BasepιxBasep|ysxpyzBasepyszpyzpx
27 24 8 6 wreu wff∃!xBasepysxpyzBasepyszpyzpx
28 27 3 cab classs|∃!xBasepysxpyzBasepyszpyzpx
29 26 28 cres classs𝒫BasepιxBasep|ysxpyzBasepyszpyzpxs|∃!xBasepysxpyzBasepyszpyzpx
30 1 2 29 cmpt classpVs𝒫BasepιxBasep|ysxpyzBasepyszpyzpxs|∃!xBasepysxpyzBasepyszpyzpx
31 0 30 wceq wffglb=pVs𝒫BasepιxBasep|ysxpyzBasepyszpyzpxs|∃!xBasepysxpyzBasepyszpyzpx