Step |
Hyp |
Ref |
Expression |
0 |
|
cal |
|- AtLat |
1 |
|
vk |
|- k |
2 |
|
clat |
|- Lat |
3 |
|
cbs |
|- Base |
4 |
1
|
cv |
|- k |
5 |
4 3
|
cfv |
|- ( Base ` k ) |
6 |
|
cglb |
|- glb |
7 |
4 6
|
cfv |
|- ( glb ` k ) |
8 |
7
|
cdm |
|- dom ( glb ` k ) |
9 |
5 8
|
wcel |
|- ( Base ` k ) e. dom ( glb ` k ) |
10 |
|
vx |
|- x |
11 |
10
|
cv |
|- x |
12 |
|
cp0 |
|- 0. |
13 |
4 12
|
cfv |
|- ( 0. ` k ) |
14 |
11 13
|
wne |
|- x =/= ( 0. ` k ) |
15 |
|
vp |
|- p |
16 |
|
catm |
|- Atoms |
17 |
4 16
|
cfv |
|- ( Atoms ` k ) |
18 |
15
|
cv |
|- p |
19 |
|
cple |
|- le |
20 |
4 19
|
cfv |
|- ( le ` k ) |
21 |
18 11 20
|
wbr |
|- p ( le ` k ) x |
22 |
21 15 17
|
wrex |
|- E. p e. ( Atoms ` k ) p ( le ` k ) x |
23 |
14 22
|
wi |
|- ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) |
24 |
23 10 5
|
wral |
|- A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) |
25 |
9 24
|
wa |
|- ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) |
26 |
25 1 2
|
crab |
|- { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |
27 |
0 26
|
wceq |
|- AtLat = { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |