Metamath Proof Explorer


Theorem iscvlat2N

Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses iscvlat2.b B=BaseK
iscvlat2.l ˙=K
iscvlat2.j ˙=joinK
iscvlat2.m ˙=meetK
iscvlat2.z 0˙=0.K
iscvlat2.a A=AtomsK
Assertion iscvlat2N KCvLatKAtLatpAqAxBp˙x=0˙p˙x˙qq˙x˙p

Proof

Step Hyp Ref Expression
1 iscvlat2.b B=BaseK
2 iscvlat2.l ˙=K
3 iscvlat2.j ˙=joinK
4 iscvlat2.m ˙=meetK
5 iscvlat2.z 0˙=0.K
6 iscvlat2.a A=AtomsK
7 1 2 3 6 iscvlat KCvLatKAtLatpAqAxB¬p˙xp˙x˙qq˙x˙p
8 simpll KAtLatpAqAxBKAtLat
9 simplrl KAtLatpAqAxBpA
10 simpr KAtLatpAqAxBxB
11 1 2 4 5 6 atnle KAtLatpAxB¬p˙xp˙x=0˙
12 8 9 10 11 syl3anc KAtLatpAqAxB¬p˙xp˙x=0˙
13 12 anbi1d KAtLatpAqAxB¬p˙xp˙x˙qp˙x=0˙p˙x˙q
14 13 imbi1d KAtLatpAqAxB¬p˙xp˙x˙qq˙x˙pp˙x=0˙p˙x˙qq˙x˙p
15 14 ralbidva KAtLatpAqAxB¬p˙xp˙x˙qq˙x˙pxBp˙x=0˙p˙x˙qq˙x˙p
16 15 2ralbidva KAtLatpAqAxB¬p˙xp˙x˙qq˙x˙ppAqAxBp˙x=0˙p˙x˙qq˙x˙p
17 16 pm5.32i KAtLatpAqAxB¬p˙xp˙x˙qq˙x˙pKAtLatpAqAxBp˙x=0˙p˙x˙qq˙x˙p
18 7 17 bitri KCvLatKAtLatpAqAxBp˙x=0˙p˙x˙qq˙x˙p