Step |
Hyp |
Ref |
Expression |
1 |
|
atnle.b |
|
2 |
|
atnle.l |
|
3 |
|
atnle.m |
|
4 |
|
atnle.z |
|
5 |
|
atnle.a |
|
6 |
|
simpl1 |
|
7 |
|
atllat |
|
8 |
7
|
3ad2ant1 |
|
9 |
1 5
|
atbase |
|
10 |
9
|
3ad2ant2 |
|
11 |
|
simp3 |
|
12 |
1 3
|
latmcl |
|
13 |
8 10 11 12
|
syl3anc |
|
14 |
13
|
adantr |
|
15 |
|
simpr |
|
16 |
1 2 4 5
|
atlex |
|
17 |
6 14 15 16
|
syl3anc |
|
18 |
|
simpl1 |
|
19 |
18 7
|
syl |
|
20 |
1 5
|
atbase |
|
21 |
20
|
adantl |
|
22 |
|
simpl2 |
|
23 |
22 9
|
syl |
|
24 |
|
simpl3 |
|
25 |
1 2 3
|
latlem12 |
|
26 |
19 21 23 24 25
|
syl13anc |
|
27 |
|
simpr |
|
28 |
2 5
|
atcmp |
|
29 |
18 27 22 28
|
syl3anc |
|
30 |
|
breq1 |
|
31 |
30
|
biimpd |
|
32 |
29 31
|
syl6bi |
|
33 |
32
|
impd |
|
34 |
26 33
|
sylbird |
|
35 |
34
|
adantlr |
|
36 |
35
|
rexlimdva |
|
37 |
17 36
|
mpd |
|
38 |
37
|
ex |
|
39 |
38
|
necon1bd |
|
40 |
4 5
|
atn0 |
|
41 |
40
|
3adant3 |
|
42 |
1 2 3
|
latleeqm1 |
|
43 |
8 10 11 42
|
syl3anc |
|
44 |
43
|
adantr |
|
45 |
|
eqeq1 |
|
46 |
45
|
biimpcd |
|
47 |
46
|
adantl |
|
48 |
44 47
|
sylbid |
|
49 |
48
|
necon3ad |
|
50 |
49
|
ex |
|
51 |
41 50
|
mpid |
|
52 |
39 51
|
impbid |
|