Metamath Proof Explorer


Theorem atnle

Description: Two ways of expressing "an atom is not less than or equal to a lattice element." ( atnssm0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atnle.b B = Base K
atnle.l ˙ = K
atnle.m ˙ = meet K
atnle.z 0 ˙ = 0. K
atnle.a A = Atoms K
Assertion atnle K AtLat P A X B ¬ P ˙ X P ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 atnle.b B = Base K
2 atnle.l ˙ = K
3 atnle.m ˙ = meet K
4 atnle.z 0 ˙ = 0. K
5 atnle.a A = Atoms K
6 simpl1 K AtLat P A X B P ˙ X 0 ˙ K AtLat
7 atllat K AtLat K Lat
8 7 3ad2ant1 K AtLat P A X B K Lat
9 1 5 atbase P A P B
10 9 3ad2ant2 K AtLat P A X B P B
11 simp3 K AtLat P A X B X B
12 1 3 latmcl K Lat P B X B P ˙ X B
13 8 10 11 12 syl3anc K AtLat P A X B P ˙ X B
14 13 adantr K AtLat P A X B P ˙ X 0 ˙ P ˙ X B
15 simpr K AtLat P A X B P ˙ X 0 ˙ P ˙ X 0 ˙
16 1 2 4 5 atlex K AtLat P ˙ X B P ˙ X 0 ˙ y A y ˙ P ˙ X
17 6 14 15 16 syl3anc K AtLat P A X B P ˙ X 0 ˙ y A y ˙ P ˙ X
18 simpl1 K AtLat P A X B y A K AtLat
19 18 7 syl K AtLat P A X B y A K Lat
20 1 5 atbase y A y B
21 20 adantl K AtLat P A X B y A y B
22 simpl2 K AtLat P A X B y A P A
23 22 9 syl K AtLat P A X B y A P B
24 simpl3 K AtLat P A X B y A X B
25 1 2 3 latlem12 K Lat y B P B X B y ˙ P y ˙ X y ˙ P ˙ X
26 19 21 23 24 25 syl13anc K AtLat P A X B y A y ˙ P y ˙ X y ˙ P ˙ X
27 simpr K AtLat P A X B y A y A
28 2 5 atcmp K AtLat y A P A y ˙ P y = P
29 18 27 22 28 syl3anc K AtLat P A X B y A y ˙ P y = P
30 breq1 y = P y ˙ X P ˙ X
31 30 biimpd y = P y ˙ X P ˙ X
32 29 31 syl6bi K AtLat P A X B y A y ˙ P y ˙ X P ˙ X
33 32 impd K AtLat P A X B y A y ˙ P y ˙ X P ˙ X
34 26 33 sylbird K AtLat P A X B y A y ˙ P ˙ X P ˙ X
35 34 adantlr K AtLat P A X B P ˙ X 0 ˙ y A y ˙ P ˙ X P ˙ X
36 35 rexlimdva K AtLat P A X B P ˙ X 0 ˙ y A y ˙ P ˙ X P ˙ X
37 17 36 mpd K AtLat P A X B P ˙ X 0 ˙ P ˙ X
38 37 ex K AtLat P A X B P ˙ X 0 ˙ P ˙ X
39 38 necon1bd K AtLat P A X B ¬ P ˙ X P ˙ X = 0 ˙
40 4 5 atn0 K AtLat P A P 0 ˙
41 40 3adant3 K AtLat P A X B P 0 ˙
42 1 2 3 latleeqm1 K Lat P B X B P ˙ X P ˙ X = P
43 8 10 11 42 syl3anc K AtLat P A X B P ˙ X P ˙ X = P
44 43 adantr K AtLat P A X B P ˙ X = 0 ˙ P ˙ X P ˙ X = P
45 eqeq1 P ˙ X = P P ˙ X = 0 ˙ P = 0 ˙
46 45 biimpcd P ˙ X = 0 ˙ P ˙ X = P P = 0 ˙
47 46 adantl K AtLat P A X B P ˙ X = 0 ˙ P ˙ X = P P = 0 ˙
48 44 47 sylbid K AtLat P A X B P ˙ X = 0 ˙ P ˙ X P = 0 ˙
49 48 necon3ad K AtLat P A X B P ˙ X = 0 ˙ P 0 ˙ ¬ P ˙ X
50 49 ex K AtLat P A X B P ˙ X = 0 ˙ P 0 ˙ ¬ P ˙ X
51 41 50 mpid K AtLat P A X B P ˙ X = 0 ˙ ¬ P ˙ X
52 39 51 impbid K AtLat P A X B ¬ P ˙ X P ˙ X = 0 ˙