Metamath Proof Explorer


Theorem atlex

Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. ( hatomic analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses atlex.b B=BaseK
atlex.l ˙=K
atlex.z 0˙=0.K
atlex.a A=AtomsK
Assertion atlex KAtLatXBX0˙yAy˙X

Proof

Step Hyp Ref Expression
1 atlex.b B=BaseK
2 atlex.l ˙=K
3 atlex.z 0˙=0.K
4 atlex.a A=AtomsK
5 eqid glbK=glbK
6 1 5 2 3 4 isatl KAtLatKLatBdomglbKxBx0˙yAy˙x
7 6 simp3bi KAtLatxBx0˙yAy˙x
8 neeq1 x=Xx0˙X0˙
9 breq2 x=Xy˙xy˙X
10 9 rexbidv x=XyAy˙xyAy˙X
11 8 10 imbi12d x=Xx0˙yAy˙xX0˙yAy˙X
12 11 rspccv xBx0˙yAy˙xXBX0˙yAy˙X
13 7 12 syl KAtLatXBX0˙yAy˙X
14 13 3imp KAtLatXBX0˙yAy˙X