Metamath Proof Explorer


Theorem hatomic

Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hatomic A C A 0 x HAtoms x A

Proof

Step Hyp Ref Expression
1 neeq1 A = if A C A 0 A 0 if A C A 0 0
2 sseq2 A = if A C A 0 x A x if A C A 0
3 2 rexbidv A = if A C A 0 x HAtoms x A x HAtoms x if A C A 0
4 1 3 imbi12d A = if A C A 0 A 0 x HAtoms x A if A C A 0 0 x HAtoms x if A C A 0
5 h0elch 0 C
6 5 elimel if A C A 0 C
7 6 hatomici if A C A 0 0 x HAtoms x if A C A 0
8 4 7 dedth A C A 0 x HAtoms x A
9 8 imp A C A 0 x HAtoms x A