| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neeq1 |
|- ( A = if ( A e. CH , A , 0H ) -> ( A =/= 0H <-> if ( A e. CH , A , 0H ) =/= 0H ) ) |
| 2 |
|
sseq2 |
|- ( A = if ( A e. CH , A , 0H ) -> ( x C_ A <-> x C_ if ( A e. CH , A , 0H ) ) ) |
| 3 |
2
|
rexbidv |
|- ( A = if ( A e. CH , A , 0H ) -> ( E. x e. HAtoms x C_ A <-> E. x e. HAtoms x C_ if ( A e. CH , A , 0H ) ) ) |
| 4 |
1 3
|
imbi12d |
|- ( A = if ( A e. CH , A , 0H ) -> ( ( A =/= 0H -> E. x e. HAtoms x C_ A ) <-> ( if ( A e. CH , A , 0H ) =/= 0H -> E. x e. HAtoms x C_ if ( A e. CH , A , 0H ) ) ) ) |
| 5 |
|
h0elch |
|- 0H e. CH |
| 6 |
5
|
elimel |
|- if ( A e. CH , A , 0H ) e. CH |
| 7 |
6
|
hatomici |
|- ( if ( A e. CH , A , 0H ) =/= 0H -> E. x e. HAtoms x C_ if ( A e. CH , A , 0H ) ) |
| 8 |
4 7
|
dedth |
|- ( A e. CH -> ( A =/= 0H -> E. x e. HAtoms x C_ A ) ) |
| 9 |
8
|
imp |
|- ( ( A e. CH /\ A =/= 0H ) -> E. x e. HAtoms x C_ A ) |