Metamath Proof Explorer


Theorem latmcl

Description: Closure of meet operation in a lattice. ( incom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latmcl.b B=BaseK
latmcl.m ˙=meetK
Assertion latmcl KLatXBYBX˙YB

Proof

Step Hyp Ref Expression
1 latmcl.b B=BaseK
2 latmcl.m ˙=meetK
3 eqid joinK=joinK
4 1 3 2 latlem KLatXBYBXjoinKYBX˙YB
5 4 simprd KLatXBYBX˙YB