Metamath Proof Explorer


Theorem atnem0

Description: The meet of distinct atoms is zero. ( atnemeq0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atnem0.m ˙=meetK
atnem0.z 0˙=0.K
atnem0.a A=AtomsK
Assertion atnem0 KAtLatPAQAPQP˙Q=0˙

Proof

Step Hyp Ref Expression
1 atnem0.m ˙=meetK
2 atnem0.z 0˙=0.K
3 atnem0.a A=AtomsK
4 eqid K=K
5 4 3 atncmp KAtLatPAQA¬PKQPQ
6 eqid BaseK=BaseK
7 6 3 atbase QAQBaseK
8 6 4 1 2 3 atnle KAtLatPAQBaseK¬PKQP˙Q=0˙
9 7 8 syl3an3 KAtLatPAQA¬PKQP˙Q=0˙
10 5 9 bitr3d KAtLatPAQAPQP˙Q=0˙