Metamath Proof Explorer


Theorem atnemeq0

Description: The meet of distinct atoms is the zero subspace. (Contributed by NM, 25-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atnemeq0 AHAtomsBHAtomsABAB=0

Proof

Step Hyp Ref Expression
1 atsseq BHAtomsAHAtomsBAB=A
2 eqcom B=AA=B
3 1 2 bitrdi BHAtomsAHAtomsBAA=B
4 3 ancoms AHAtomsBHAtomsBAA=B
5 4 necon3bbid AHAtomsBHAtoms¬BAAB
6 atelch AHAtomsAC
7 atnssm0 ACBHAtoms¬BAAB=0
8 6 7 sylan AHAtomsBHAtoms¬BAAB=0
9 5 8 bitr3d AHAtomsBHAtomsABAB=0