Metamath Proof Explorer


Theorem atssma

Description: The meet with an atom's superset is the atom. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion atssma AHAtomsBCABABHAtoms

Proof

Step Hyp Ref Expression
1 df-ss ABAB=A
2 1 biimpi ABAB=A
3 2 eleq1d ABABHAtomsAHAtoms
4 3 biimprcd AHAtomsABABHAtoms
5 4 adantr AHAtomsBCABABHAtoms
6 incom AB=BA
7 6 eleq1i ABHAtomsBAHAtoms
8 atne0 BAHAtomsBA0
9 8 neneqd BAHAtoms¬BA=0
10 7 9 sylbi ABHAtoms¬BA=0
11 atnssm0 BCAHAtoms¬ABBA=0
12 11 ancoms AHAtomsBC¬ABBA=0
13 12 biimpd AHAtomsBC¬ABBA=0
14 13 con1d AHAtomsBC¬BA=0AB
15 10 14 syl5 AHAtomsBCABHAtomsAB
16 5 15 impbid AHAtomsBCABABHAtoms