Metamath Proof Explorer


Theorem atcv0eq

Description: Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcv0eq AHAtomsBHAtoms0ABA=B

Proof

Step Hyp Ref Expression
1 atnemeq0 AHAtomsBHAtomsABAB=0
2 atelch AHAtomsAC
3 cvp ACBHAtomsAB=0AAB
4 2 3 sylan AHAtomsBHAtomsAB=0AAB
5 atcv0 AHAtoms0A
6 5 adantr AHAtomsBHAtoms0A
7 6 biantrurd AHAtomsBHAtomsAAB0AAAB
8 1 4 7 3bitrd AHAtomsBHAtomsAB0AAAB
9 atelch BHAtomsBC
10 chjcl ACBCABC
11 h0elch 0C
12 cvntr 0CACABC0AAAB¬0AB
13 11 12 mp3an1 ACABC0AAAB¬0AB
14 10 13 syldan ACBC0AAAB¬0AB
15 2 9 14 syl2an AHAtomsBHAtoms0AAAB¬0AB
16 8 15 sylbid AHAtomsBHAtomsAB¬0AB
17 16 necon4ad AHAtomsBHAtoms0ABA=B
18 oveq1 A=BAB=BB
19 chjidm BCBB=B
20 9 19 syl BHAtomsBB=B
21 18 20 sylan9eq A=BBHAtomsAB=B
22 21 eqcomd A=BBHAtomsB=AB
23 22 eleq1d A=BBHAtomsBHAtomsABHAtoms
24 23 ex A=BBHAtomsBHAtomsABHAtoms
25 24 ibd A=BBHAtomsABHAtoms
26 atcv0 ABHAtoms0AB
27 25 26 syl6com BHAtomsA=B0AB
28 27 adantl AHAtomsBHAtomsA=B0AB
29 17 28 impbid AHAtomsBHAtoms0ABA=B