Metamath Proof Explorer


Theorem atcv0eq

Description: Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcv0eq A HAtoms B HAtoms 0 A B A = B

Proof

Step Hyp Ref Expression
1 atnemeq0 A HAtoms B HAtoms A B A B = 0
2 atelch A HAtoms A C
3 cvp A C B HAtoms A B = 0 A A B
4 2 3 sylan A HAtoms B HAtoms A B = 0 A A B
5 atcv0 A HAtoms 0 A
6 5 adantr A HAtoms B HAtoms 0 A
7 6 biantrurd A HAtoms B HAtoms A A B 0 A A A B
8 1 4 7 3bitrd A HAtoms B HAtoms A B 0 A A A B
9 atelch B HAtoms B C
10 chjcl A C B C A B C
11 h0elch 0 C
12 cvntr 0 C A C A B C 0 A A A B ¬ 0 A B
13 11 12 mp3an1 A C A B C 0 A A A B ¬ 0 A B
14 10 13 syldan A C B C 0 A A A B ¬ 0 A B
15 2 9 14 syl2an A HAtoms B HAtoms 0 A A A B ¬ 0 A B
16 8 15 sylbid A HAtoms B HAtoms A B ¬ 0 A B
17 16 necon4ad A HAtoms B HAtoms 0 A B A = B
18 oveq1 A = B A B = B B
19 chjidm B C B B = B
20 9 19 syl B HAtoms B B = B
21 18 20 sylan9eq A = B B HAtoms A B = B
22 21 eqcomd A = B B HAtoms B = A B
23 22 eleq1d A = B B HAtoms B HAtoms A B HAtoms
24 23 ex A = B B HAtoms B HAtoms A B HAtoms
25 24 ibd A = B B HAtoms A B HAtoms
26 atcv0 A B HAtoms 0 A B
27 25 26 syl6com B HAtoms A = B 0 A B
28 27 adantl A HAtoms B HAtoms A = B 0 A B
29 17 28 impbid A HAtoms B HAtoms 0 A B A = B