Step |
Hyp |
Ref |
Expression |
1 |
|
atnemeq0 |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
2 |
|
atelch |
⊢ ( 𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
3 |
|
cvp |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
5 |
|
atcv0 |
⊢ ( 𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → 0ℋ ⋖ℋ 𝐴 ) |
7 |
6
|
biantrurd |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 0ℋ ⋖ℋ 𝐴 ∧ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
8 |
1 4 7
|
3bitrd |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ≠ 𝐵 ↔ ( 0ℋ ⋖ℋ 𝐴 ∧ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
9 |
|
atelch |
⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) |
10 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
11 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
12 |
|
cvntr |
⊢ ( ( 0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( ( 0ℋ ⋖ℋ 𝐴 ∧ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → ¬ 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
13 |
11 12
|
mp3an1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( ( 0ℋ ⋖ℋ 𝐴 ∧ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → ¬ 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
14 |
10 13
|
syldan |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 0ℋ ⋖ℋ 𝐴 ∧ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → ¬ 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
15 |
2 9 14
|
syl2an |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( ( 0ℋ ⋖ℋ 𝐴 ∧ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → ¬ 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
16 |
8 15
|
sylbid |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ≠ 𝐵 → ¬ 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
17 |
16
|
necon4ad |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 = 𝐵 ) ) |
18 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐵 ) ) |
19 |
|
chjidm |
⊢ ( 𝐵 ∈ Cℋ → ( 𝐵 ∨ℋ 𝐵 ) = 𝐵 ) |
20 |
9 19
|
syl |
⊢ ( 𝐵 ∈ HAtoms → ( 𝐵 ∨ℋ 𝐵 ) = 𝐵 ) |
21 |
18 20
|
sylan9eq |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ HAtoms ) → 𝐵 = ( 𝐴 ∨ℋ 𝐵 ) ) |
23 |
22
|
eleq1d |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ HAtoms ) → ( 𝐵 ∈ HAtoms ↔ ( 𝐴 ∨ℋ 𝐵 ) ∈ HAtoms ) ) |
24 |
23
|
ex |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ HAtoms → ( 𝐵 ∈ HAtoms ↔ ( 𝐴 ∨ℋ 𝐵 ) ∈ HAtoms ) ) ) |
25 |
24
|
ibd |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ HAtoms → ( 𝐴 ∨ℋ 𝐵 ) ∈ HAtoms ) ) |
26 |
|
atcv0 |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∈ HAtoms → 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) |
27 |
25 26
|
syl6com |
⊢ ( 𝐵 ∈ HAtoms → ( 𝐴 = 𝐵 → 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 = 𝐵 → 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
29 |
17 28
|
impbid |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 0ℋ ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |