Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝐴 = 0ℋ → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 0ℋ ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
2 |
|
atcv0eq |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 0ℋ ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
3 |
1 2
|
sylan9bbr |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐴 = 0ℋ ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
4 |
3
|
biimpd |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐴 = 0ℋ ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → 𝐵 = 𝐶 ) ) |
5 |
4
|
ex |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 = 0ℋ → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
6 |
5
|
com23 |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → ( 𝐴 = 0ℋ → 𝐵 = 𝐶 ) ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → ( 𝐴 = 0ℋ → 𝐵 = 𝐶 ) ) ) |
8 |
7
|
imp |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐴 = 0ℋ → 𝐵 = 𝐶 ) ) |
9 |
|
oveq1 |
⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐶 ) ) |
10 |
|
atelch |
⊢ ( 𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) |
11 |
|
chjidm |
⊢ ( 𝐶 ∈ Cℋ → ( 𝐶 ∨ℋ 𝐶 ) = 𝐶 ) |
12 |
10 11
|
syl |
⊢ ( 𝐶 ∈ HAtoms → ( 𝐶 ∨ℋ 𝐶 ) = 𝐶 ) |
13 |
9 12
|
sylan9eq |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝐶 ∈ HAtoms ) → ( 𝐵 ∨ℋ 𝐶 ) = 𝐶 ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝐶 ∈ HAtoms ) → 𝐶 = ( 𝐵 ∨ℋ 𝐶 ) ) |
15 |
14
|
eleq1d |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝐶 ∈ HAtoms ) → ( 𝐶 ∈ HAtoms ↔ ( 𝐵 ∨ℋ 𝐶 ) ∈ HAtoms ) ) |
16 |
15
|
ex |
⊢ ( 𝐵 = 𝐶 → ( 𝐶 ∈ HAtoms → ( 𝐶 ∈ HAtoms ↔ ( 𝐵 ∨ℋ 𝐶 ) ∈ HAtoms ) ) ) |
17 |
16
|
ibd |
⊢ ( 𝐵 = 𝐶 → ( 𝐶 ∈ HAtoms → ( 𝐵 ∨ℋ 𝐶 ) ∈ HAtoms ) ) |
18 |
17
|
impcom |
⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) → ( 𝐵 ∨ℋ 𝐶 ) ∈ HAtoms ) |
19 |
|
atcveq0 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 𝐴 = 0ℋ ) ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 𝐴 = 0ℋ ) ) |
21 |
20
|
biimpd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → 𝐴 = 0ℋ ) ) |
22 |
21
|
exp32 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐶 ∈ HAtoms → ( 𝐵 = 𝐶 → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → 𝐴 = 0ℋ ) ) ) ) |
23 |
22
|
com34 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐶 ∈ HAtoms → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → ( 𝐵 = 𝐶 → 𝐴 = 0ℋ ) ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → ( 𝐵 = 𝐶 → 𝐴 = 0ℋ ) ) ) |
25 |
24
|
3adant2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → ( 𝐵 = 𝐶 → 𝐴 = 0ℋ ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐵 = 𝐶 → 𝐴 = 0ℋ ) ) |
27 |
8 26
|
impbid |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐴 ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐴 = 0ℋ ↔ 𝐵 = 𝐶 ) ) |