Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( A = 0H -> ( A 0H |
2 |
|
atcv0eq |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( 0H B = C ) ) |
3 |
1 2
|
sylan9bbr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A = 0H ) -> ( A B = C ) ) |
4 |
3
|
biimpd |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A = 0H ) -> ( A B = C ) ) |
5 |
4
|
ex |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A = 0H -> ( A B = C ) ) ) |
6 |
5
|
com23 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A ( A = 0H -> B = C ) ) ) |
7 |
6
|
3adant1 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A ( A = 0H -> B = C ) ) ) |
8 |
7
|
imp |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( A = 0H -> B = C ) ) |
9 |
|
oveq1 |
|- ( B = C -> ( B vH C ) = ( C vH C ) ) |
10 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
11 |
|
chjidm |
|- ( C e. CH -> ( C vH C ) = C ) |
12 |
10 11
|
syl |
|- ( C e. HAtoms -> ( C vH C ) = C ) |
13 |
9 12
|
sylan9eq |
|- ( ( B = C /\ C e. HAtoms ) -> ( B vH C ) = C ) |
14 |
13
|
eqcomd |
|- ( ( B = C /\ C e. HAtoms ) -> C = ( B vH C ) ) |
15 |
14
|
eleq1d |
|- ( ( B = C /\ C e. HAtoms ) -> ( C e. HAtoms <-> ( B vH C ) e. HAtoms ) ) |
16 |
15
|
ex |
|- ( B = C -> ( C e. HAtoms -> ( C e. HAtoms <-> ( B vH C ) e. HAtoms ) ) ) |
17 |
16
|
ibd |
|- ( B = C -> ( C e. HAtoms -> ( B vH C ) e. HAtoms ) ) |
18 |
17
|
impcom |
|- ( ( C e. HAtoms /\ B = C ) -> ( B vH C ) e. HAtoms ) |
19 |
|
atcveq0 |
|- ( ( A e. CH /\ ( B vH C ) e. HAtoms ) -> ( A A = 0H ) ) |
20 |
18 19
|
sylan2 |
|- ( ( A e. CH /\ ( C e. HAtoms /\ B = C ) ) -> ( A A = 0H ) ) |
21 |
20
|
biimpd |
|- ( ( A e. CH /\ ( C e. HAtoms /\ B = C ) ) -> ( A A = 0H ) ) |
22 |
21
|
exp32 |
|- ( A e. CH -> ( C e. HAtoms -> ( B = C -> ( A A = 0H ) ) ) ) |
23 |
22
|
com34 |
|- ( A e. CH -> ( C e. HAtoms -> ( A ( B = C -> A = 0H ) ) ) ) |
24 |
23
|
imp |
|- ( ( A e. CH /\ C e. HAtoms ) -> ( A ( B = C -> A = 0H ) ) ) |
25 |
24
|
3adant2 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A ( B = C -> A = 0H ) ) ) |
26 |
25
|
imp |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( B = C -> A = 0H ) ) |
27 |
8 26
|
impbid |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( A = 0H <-> B = C ) ) |