| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( A = 0H -> ( A 0H |
| 2 |
|
atcv0eq |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( 0H B = C ) ) |
| 3 |
1 2
|
sylan9bbr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A = 0H ) -> ( A B = C ) ) |
| 4 |
3
|
biimpd |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A = 0H ) -> ( A B = C ) ) |
| 5 |
4
|
ex |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A = 0H -> ( A B = C ) ) ) |
| 6 |
5
|
com23 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A ( A = 0H -> B = C ) ) ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A ( A = 0H -> B = C ) ) ) |
| 8 |
7
|
imp |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( A = 0H -> B = C ) ) |
| 9 |
|
oveq1 |
|- ( B = C -> ( B vH C ) = ( C vH C ) ) |
| 10 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
| 11 |
|
chjidm |
|- ( C e. CH -> ( C vH C ) = C ) |
| 12 |
10 11
|
syl |
|- ( C e. HAtoms -> ( C vH C ) = C ) |
| 13 |
9 12
|
sylan9eq |
|- ( ( B = C /\ C e. HAtoms ) -> ( B vH C ) = C ) |
| 14 |
13
|
eqcomd |
|- ( ( B = C /\ C e. HAtoms ) -> C = ( B vH C ) ) |
| 15 |
14
|
eleq1d |
|- ( ( B = C /\ C e. HAtoms ) -> ( C e. HAtoms <-> ( B vH C ) e. HAtoms ) ) |
| 16 |
15
|
ex |
|- ( B = C -> ( C e. HAtoms -> ( C e. HAtoms <-> ( B vH C ) e. HAtoms ) ) ) |
| 17 |
16
|
ibd |
|- ( B = C -> ( C e. HAtoms -> ( B vH C ) e. HAtoms ) ) |
| 18 |
17
|
impcom |
|- ( ( C e. HAtoms /\ B = C ) -> ( B vH C ) e. HAtoms ) |
| 19 |
|
atcveq0 |
|- ( ( A e. CH /\ ( B vH C ) e. HAtoms ) -> ( A A = 0H ) ) |
| 20 |
18 19
|
sylan2 |
|- ( ( A e. CH /\ ( C e. HAtoms /\ B = C ) ) -> ( A A = 0H ) ) |
| 21 |
20
|
biimpd |
|- ( ( A e. CH /\ ( C e. HAtoms /\ B = C ) ) -> ( A A = 0H ) ) |
| 22 |
21
|
exp32 |
|- ( A e. CH -> ( C e. HAtoms -> ( B = C -> ( A A = 0H ) ) ) ) |
| 23 |
22
|
com34 |
|- ( A e. CH -> ( C e. HAtoms -> ( A ( B = C -> A = 0H ) ) ) ) |
| 24 |
23
|
imp |
|- ( ( A e. CH /\ C e. HAtoms ) -> ( A ( B = C -> A = 0H ) ) ) |
| 25 |
24
|
3adant2 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A ( B = C -> A = 0H ) ) ) |
| 26 |
25
|
imp |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( B = C -> A = 0H ) ) |
| 27 |
8 26
|
impbid |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( A = 0H <-> B = C ) ) |