Metamath Proof Explorer


Theorem atcv1

Description: Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcv1
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A  ( A = 0H <-> B = C ) )

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( A = 0H -> ( A  0H 
2 atcv0eq
 |-  ( ( B e. HAtoms /\ C e. HAtoms ) -> ( 0H  B = C ) )
3 1 2 sylan9bbr
 |-  ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A = 0H ) -> ( A  B = C ) )
4 3 biimpd
 |-  ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A = 0H ) -> ( A  B = C ) )
5 4 ex
 |-  ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A = 0H -> ( A  B = C ) ) )
6 5 com23
 |-  ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A  ( A = 0H -> B = C ) ) )
7 6 3adant1
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A  ( A = 0H -> B = C ) ) )
8 7 imp
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A  ( A = 0H -> B = C ) )
9 oveq1
 |-  ( B = C -> ( B vH C ) = ( C vH C ) )
10 atelch
 |-  ( C e. HAtoms -> C e. CH )
11 chjidm
 |-  ( C e. CH -> ( C vH C ) = C )
12 10 11 syl
 |-  ( C e. HAtoms -> ( C vH C ) = C )
13 9 12 sylan9eq
 |-  ( ( B = C /\ C e. HAtoms ) -> ( B vH C ) = C )
14 13 eqcomd
 |-  ( ( B = C /\ C e. HAtoms ) -> C = ( B vH C ) )
15 14 eleq1d
 |-  ( ( B = C /\ C e. HAtoms ) -> ( C e. HAtoms <-> ( B vH C ) e. HAtoms ) )
16 15 ex
 |-  ( B = C -> ( C e. HAtoms -> ( C e. HAtoms <-> ( B vH C ) e. HAtoms ) ) )
17 16 ibd
 |-  ( B = C -> ( C e. HAtoms -> ( B vH C ) e. HAtoms ) )
18 17 impcom
 |-  ( ( C e. HAtoms /\ B = C ) -> ( B vH C ) e. HAtoms )
19 atcveq0
 |-  ( ( A e. CH /\ ( B vH C ) e. HAtoms ) -> ( A  A = 0H ) )
20 18 19 sylan2
 |-  ( ( A e. CH /\ ( C e. HAtoms /\ B = C ) ) -> ( A  A = 0H ) )
21 20 biimpd
 |-  ( ( A e. CH /\ ( C e. HAtoms /\ B = C ) ) -> ( A  A = 0H ) )
22 21 exp32
 |-  ( A e. CH -> ( C e. HAtoms -> ( B = C -> ( A  A = 0H ) ) ) )
23 22 com34
 |-  ( A e. CH -> ( C e. HAtoms -> ( A  ( B = C -> A = 0H ) ) ) )
24 23 imp
 |-  ( ( A e. CH /\ C e. HAtoms ) -> ( A  ( B = C -> A = 0H ) ) )
25 24 3adant2
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A  ( B = C -> A = 0H ) ) )
26 25 imp
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A  ( B = C -> A = 0H ) )
27 8 26 impbid
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A  ( A = 0H <-> B = C ) )