Metamath Proof Explorer


Theorem atcveq0

Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcveq0
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A  A = 0H ) )

Proof

Step Hyp Ref Expression
1 atelch
 |-  ( B e. HAtoms -> B e. CH )
2 cvpss
 |-  ( ( A e. CH /\ B e. CH ) -> ( A  A C. B ) )
3 1 2 sylan2
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  A C. B ) )
4 ch0le
 |-  ( A e. CH -> 0H C_ A )
5 4 adantr
 |-  ( ( A e. CH /\ B e. HAtoms ) -> 0H C_ A )
6 3 5 jctild
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  ( 0H C_ A /\ A C. B ) ) )
7 atcv0
 |-  ( B e. HAtoms -> 0H 
8 7 adantr
 |-  ( ( B e. HAtoms /\ A e. CH ) -> 0H 
9 h0elch
 |-  0H e. CH
10 cvnbtwn3
 |-  ( ( 0H e. CH /\ B e. CH /\ A e. CH ) -> ( 0H  ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) )
11 9 10 mp3an1
 |-  ( ( B e. CH /\ A e. CH ) -> ( 0H  ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) )
12 1 11 sylan
 |-  ( ( B e. HAtoms /\ A e. CH ) -> ( 0H  ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) )
13 8 12 mpd
 |-  ( ( B e. HAtoms /\ A e. CH ) -> ( ( 0H C_ A /\ A C. B ) -> A = 0H ) )
14 13 ancoms
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( 0H C_ A /\ A C. B ) -> A = 0H ) )
15 6 14 syld
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  A = 0H ) )
16 breq1
 |-  ( A = 0H -> ( A  0H 
17 7 16 syl5ibrcom
 |-  ( B e. HAtoms -> ( A = 0H -> A 
18 17 adantl
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A = 0H -> A 
19 15 18 impbid
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  A = 0H ) )