Step |
Hyp |
Ref |
Expression |
1 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
2 |
|
cvpss |
|- ( ( A e. CH /\ B e. CH ) -> ( A A C. B ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A A C. B ) ) |
4 |
|
ch0le |
|- ( A e. CH -> 0H C_ A ) |
5 |
4
|
adantr |
|- ( ( A e. CH /\ B e. HAtoms ) -> 0H C_ A ) |
6 |
3 5
|
jctild |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A ( 0H C_ A /\ A C. B ) ) ) |
7 |
|
atcv0 |
|- ( B e. HAtoms -> 0H |
8 |
7
|
adantr |
|- ( ( B e. HAtoms /\ A e. CH ) -> 0H |
9 |
|
h0elch |
|- 0H e. CH |
10 |
|
cvnbtwn3 |
|- ( ( 0H e. CH /\ B e. CH /\ A e. CH ) -> ( 0H ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) ) |
11 |
9 10
|
mp3an1 |
|- ( ( B e. CH /\ A e. CH ) -> ( 0H ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) ) |
12 |
1 11
|
sylan |
|- ( ( B e. HAtoms /\ A e. CH ) -> ( 0H ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) ) |
13 |
8 12
|
mpd |
|- ( ( B e. HAtoms /\ A e. CH ) -> ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) |
14 |
13
|
ancoms |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( 0H C_ A /\ A C. B ) -> A = 0H ) ) |
15 |
6 14
|
syld |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A A = 0H ) ) |
16 |
|
breq1 |
|- ( A = 0H -> ( A 0H |
17 |
7 16
|
syl5ibrcom |
|- ( B e. HAtoms -> ( A = 0H -> A |
18 |
17
|
adantl |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A = 0H -> A |
19 |
15 18
|
impbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A A = 0H ) ) |