Step |
Hyp |
Ref |
Expression |
1 |
|
cvnbtwn |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A -. ( A C. C /\ C C. B ) ) ) |
2 |
|
iman |
|- ( ( ( A C_ C /\ C C. B ) -> A = C ) <-> -. ( ( A C_ C /\ C C. B ) /\ -. A = C ) ) |
3 |
|
eqcom |
|- ( C = A <-> A = C ) |
4 |
3
|
imbi2i |
|- ( ( ( A C_ C /\ C C. B ) -> C = A ) <-> ( ( A C_ C /\ C C. B ) -> A = C ) ) |
5 |
|
dfpss2 |
|- ( A C. C <-> ( A C_ C /\ -. A = C ) ) |
6 |
5
|
anbi1i |
|- ( ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ -. A = C ) /\ C C. B ) ) |
7 |
|
an32 |
|- ( ( ( A C_ C /\ -. A = C ) /\ C C. B ) <-> ( ( A C_ C /\ C C. B ) /\ -. A = C ) ) |
8 |
6 7
|
bitri |
|- ( ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ C C. B ) /\ -. A = C ) ) |
9 |
8
|
notbii |
|- ( -. ( A C. C /\ C C. B ) <-> -. ( ( A C_ C /\ C C. B ) /\ -. A = C ) ) |
10 |
2 4 9
|
3bitr4ri |
|- ( -. ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ C C. B ) -> C = A ) ) |
11 |
1 10
|
syl6ib |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A ( ( A C_ C /\ C C. B ) -> C = A ) ) ) |