Metamath Proof Explorer


Theorem cvnbtwn3

Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn3 ACBCCCABACCBC=A

Proof

Step Hyp Ref Expression
1 cvnbtwn ACBCCCAB¬ACCB
2 iman ACCBA=C¬ACCB¬A=C
3 eqcom C=AA=C
4 3 imbi2i ACCBC=AACCBA=C
5 dfpss2 ACAC¬A=C
6 5 anbi1i ACCBAC¬A=CCB
7 an32 AC¬A=CCBACCB¬A=C
8 6 7 bitri ACCBACCB¬A=C
9 8 notbii ¬ACCB¬ACCB¬A=C
10 2 4 9 3bitr4ri ¬ACCBACCBC=A
11 1 10 imbitrdi ACBCCCABACCBC=A