Metamath Proof Explorer


Theorem cvnbtwn

Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn ACBCCCAB¬ACCB

Proof

Step Hyp Ref Expression
1 cvbr ACBCABAB¬xCAxxB
2 psseq2 x=CAxAC
3 psseq1 x=CxBCB
4 2 3 anbi12d x=CAxxBACCB
5 4 rspcev CCACCBxCAxxB
6 5 ex CCACCBxCAxxB
7 6 con3rr3 ¬xCAxxBCC¬ACCB
8 7 adantl AB¬xCAxxBCC¬ACCB
9 1 8 syl6bi ACBCABCC¬ACCB
10 9 com23 ACBCCCAB¬ACCB
11 10 3impia ACBCCCAB¬ACCB