Metamath Proof Explorer


Theorem cvbr

Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvbr ACBCABAB¬xCAxxB

Proof

Step Hyp Ref Expression
1 eleq1 y=AyCAC
2 1 anbi1d y=AyCzCACzC
3 psseq1 y=AyzAz
4 psseq1 y=AyxAx
5 4 anbi1d y=AyxxzAxxz
6 5 rexbidv y=AxCyxxzxCAxxz
7 6 notbid y=A¬xCyxxz¬xCAxxz
8 3 7 anbi12d y=Ayz¬xCyxxzAz¬xCAxxz
9 2 8 anbi12d y=AyCzCyz¬xCyxxzACzCAz¬xCAxxz
10 eleq1 z=BzCBC
11 10 anbi2d z=BACzCACBC
12 psseq2 z=BAzAB
13 psseq2 z=BxzxB
14 13 anbi2d z=BAxxzAxxB
15 14 rexbidv z=BxCAxxzxCAxxB
16 15 notbid z=B¬xCAxxz¬xCAxxB
17 12 16 anbi12d z=BAz¬xCAxxzAB¬xCAxxB
18 11 17 anbi12d z=BACzCAz¬xCAxxzACBCAB¬xCAxxB
19 df-cv =yz|yCzCyz¬xCyxxz
20 9 18 19 brabg ACBCABACBCAB¬xCAxxB
21 20 bianabs ACBCABAB¬xCAxxB