Metamath Proof Explorer


Theorem cvbr

Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑦 = 𝐴 → ( 𝑦C𝐴C ) )
2 1 anbi1d ( 𝑦 = 𝐴 → ( ( 𝑦C𝑧C ) ↔ ( 𝐴C𝑧C ) ) )
3 psseq1 ( 𝑦 = 𝐴 → ( 𝑦𝑧𝐴𝑧 ) )
4 psseq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
5 4 anbi1d ( 𝑦 = 𝐴 → ( ( 𝑦𝑥𝑥𝑧 ) ↔ ( 𝐴𝑥𝑥𝑧 ) ) )
6 5 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥C ( 𝑦𝑥𝑥𝑧 ) ↔ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ) )
7 6 notbid ( 𝑦 = 𝐴 → ( ¬ ∃ 𝑥C ( 𝑦𝑥𝑥𝑧 ) ↔ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ) )
8 3 7 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝑧 ∧ ¬ ∃ 𝑥C ( 𝑦𝑥𝑥𝑧 ) ) ↔ ( 𝐴𝑧 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ) ) )
9 2 8 anbi12d ( 𝑦 = 𝐴 → ( ( ( 𝑦C𝑧C ) ∧ ( 𝑦𝑧 ∧ ¬ ∃ 𝑥C ( 𝑦𝑥𝑥𝑧 ) ) ) ↔ ( ( 𝐴C𝑧C ) ∧ ( 𝐴𝑧 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ) ) ) )
10 eleq1 ( 𝑧 = 𝐵 → ( 𝑧C𝐵C ) )
11 10 anbi2d ( 𝑧 = 𝐵 → ( ( 𝐴C𝑧C ) ↔ ( 𝐴C𝐵C ) ) )
12 psseq2 ( 𝑧 = 𝐵 → ( 𝐴𝑧𝐴𝐵 ) )
13 psseq2 ( 𝑧 = 𝐵 → ( 𝑥𝑧𝑥𝐵 ) )
14 13 anbi2d ( 𝑧 = 𝐵 → ( ( 𝐴𝑥𝑥𝑧 ) ↔ ( 𝐴𝑥𝑥𝐵 ) ) )
15 14 rexbidv ( 𝑧 = 𝐵 → ( ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ↔ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) )
16 15 notbid ( 𝑧 = 𝐵 → ( ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ↔ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) )
17 12 16 anbi12d ( 𝑧 = 𝐵 → ( ( 𝐴𝑧 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ) ↔ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) )
18 11 17 anbi12d ( 𝑧 = 𝐵 → ( ( ( 𝐴C𝑧C ) ∧ ( 𝐴𝑧 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝑧 ) ) ) ↔ ( ( 𝐴C𝐵C ) ∧ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) ) )
19 df-cv = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝑦C𝑧C ) ∧ ( 𝑦𝑧 ∧ ¬ ∃ 𝑥C ( 𝑦𝑥𝑥𝑧 ) ) ) }
20 9 18 19 brabg ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( ( 𝐴C𝐵C ) ∧ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) ) )
21 20 bianabs ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) )