Step |
Hyp |
Ref |
Expression |
0 |
|
ccv |
⊢ ⋖ℋ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
1
|
cv |
⊢ 𝑥 |
4 |
|
cch |
⊢ Cℋ |
5 |
3 4
|
wcel |
⊢ 𝑥 ∈ Cℋ |
6 |
2
|
cv |
⊢ 𝑦 |
7 |
6 4
|
wcel |
⊢ 𝑦 ∈ Cℋ |
8 |
5 7
|
wa |
⊢ ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) |
9 |
3 6
|
wpss |
⊢ 𝑥 ⊊ 𝑦 |
10 |
|
vz |
⊢ 𝑧 |
11 |
10
|
cv |
⊢ 𝑧 |
12 |
3 11
|
wpss |
⊢ 𝑥 ⊊ 𝑧 |
13 |
11 6
|
wpss |
⊢ 𝑧 ⊊ 𝑦 |
14 |
12 13
|
wa |
⊢ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) |
15 |
14 10 4
|
wrex |
⊢ ∃ 𝑧 ∈ Cℋ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) |
16 |
15
|
wn |
⊢ ¬ ∃ 𝑧 ∈ Cℋ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) |
17 |
9 16
|
wa |
⊢ ( 𝑥 ⊊ 𝑦 ∧ ¬ ∃ 𝑧 ∈ Cℋ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) ) |
18 |
8 17
|
wa |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ( 𝑥 ⊊ 𝑦 ∧ ¬ ∃ 𝑧 ∈ Cℋ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) ) ) |
19 |
18 1 2
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ( 𝑥 ⊊ 𝑦 ∧ ¬ ∃ 𝑧 ∈ Cℋ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) ) ) } |
20 |
0 19
|
wceq |
⊢ ⋖ℋ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ( 𝑥 ⊊ 𝑦 ∧ ¬ ∃ 𝑧 ∈ Cℋ ( 𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦 ) ) ) } |